
Dynamic Taint Analysis in Python

Kamran Ahmed

August 13, 2024

1

Contents

1 Background 3

2 Technical Approach and Initial Work 5
2.1 Strategy . 5
2.2 Interface . 5
2.3 Runtime Library . 7

2.3.1 Taint Representation . 7
2.3.2 Taint Propagation . 8

2.4 Instrumentation . 9
2.5 Setup . 10

3 Evaluation Methodology 11
3.1 Validation . 11
3.2 Performance Testing . 11
3.3 Microbenchmarks . 12

4 Microbenchmarks 13
4.1 SQL Injection . 13
4.2 Cryptograhpic Key Leakage . 15

5 Future Directions 17
5.1 User-Defined Taint Flow . 17
5.2 Static Analysis Optimization . 17
5.3 Interpreter Modification . 17

2

1 Background

Motivation. Bugs in consumer-facing applications can lead to the theft of sensitive data,
including personal and financial information. Most of the time, these vulnerabilities result
from improper handling of sensitive data within an application or lack of input validation.
For example, SQL injection attacks can be used to extract information from a database or
modify its contents if an application does not properly sanitize user input.

Analysis Description. To mitigate these risks, developers can employ a technique called
taint tracking to identify and track the flow of sensitive data through an application. This
works by “tainting” untrusted data and tracking its flow through a program at runtime.
If this tainted data ends up in a sensitive sink, such as a database query, the application
can immediately raise an alert and exit the program. This allows developers to identify
vulnerabilities and take steps to prevent sensitive data from being leaked or modified.

Implementation Strategies. Taint tracking can be implemented in various ways. Static
analysis can be used to identify vulnerabilities at compile time, warning developers of issues
before the application is ever deployed. Dynamic taint analysis can be used to track the
flow of data at runtime, allowing for more accurate information tracking. Static analyses
offer a more conservative approach, but dynamic analyses can provide more accurate results
based on how the application behaves. In a dynamic approach, taint tracking could be
implemented by instrumenting the application’s source code or bytecode, or by modifying a
scripting language’s interpreter to track the flow of data directly.

Tool Overview. In this project, we focus on implementing a simple dynamic taint tracking
system using program instrumentation. At a high level, we use Python as our target language
and use the ast library to parse the source code and insert taint tracking code into the
program’s abstract syntax tree (AST). Then, we can either directly execute the instrumented
code or save it to a file for later execution. We built a comprehensive test suite to validate
the correctness of runtime taint tracking. We provide an easy-to-use API for developers to
taint data and track its flow through the application and showcase a simple example of how
taint tracking can be used to intercept and prevent SQL injection attacks in a Python web
application. We also provide a more complex example of how taint tracking can be used
to prevent the leakage of sensitive information such as private cryptographic keys in a chat
application. The novelty of this project lies in the fact that we created a robust runtime
system with minimal overhead without modifying the Python interpreter.

Previous Work. Most Python-based taint tracking tools are very limited in the language
features they support. In [1], the authors develop a dynamic taint analysis in which users
have to make library calls into the taint tracking library themselves. This leaves the system
open to error, as the developer not only has to maintain knowledge of their code base but
also the taint tracking library. Furthermore, this means that the taint analysis code is

3

directly embedded with the application logic, making it difficult to maintain and update.
Unfortunately, this library only works on a small subset of the Python language (e.g., strings
and integers) and requires the user to manually mark the functions that should propagate
taint. We provide a library that just requires labeling taint sources and sinks with type
comments, which is less invasive and more maintainable. We also provide a unique taint
representation that supports taint tracking in most data types by default and supports the
propagation of taint through regular Python functions and methods.

DynaPyt is a generic dynamic analysis framework in Python that can be used to imple-
ment various dynamic analysis tools [2]. The authors provide a simple interface to easily
create custom dynamic analyses and provide an example of a taint tracking analysis. How-
ever, DynaPyt comes with a few limitations. First, because it is a generic framework, the
authors have added many features and runtime hooks that are not necessary for a taint
tracking system (e.g., control flow events and memory read and write events). This means
that they also have to instrument more code than necessary, which will probably slow down
the analysis. The taint analysis example they provide strictly uses the id function to track
taint which is not a scalable approach because two Python objects with non-overlapping
lifetimes can have the same id. This means that this analysis will be overly conservative
and will not be able to track taint accurately. Lastly, code in third-party libraries will not
propagate taint because it has not been instrumented. This is a key feature of our system,
as we directly add taint tracking information to objects themselves. And since our represen-
tation does not affect the functionality of the object, it can be used to track taint through
third-party libraries as well.

Pysa is a static taint analysis tool for Python that uses configuration files and type hints
to specify taint sources and sinks [3]. One limitation of this tool is that it does not capture
control flow information in code outside of the analyzed repository. To mitigate this, the
analysis assumes that if a tainted value is passed to a function that it does not have the
source code for, the function will return a tainted value as well. This is a very conservative
assumption, and since static analysis is inherently conservative anyway, this tool may produce
false positives. Users may become desensitized to the warnings and ignore them, which can
lead to critical security vulnerabilities. This type of analysis does not provide the same
level of accuracy as a dynamic analysis as aforementioned because it does not have access to
runtime state.

4

2 Technical Approach and Initial Work

In this section, we will describe the high-level strategy of our taint analysis tool, the interface
through which developers interact with it, and the internal workings of the tool (i.e., the
instrumentation procedure and the runtime library).

2.1 Strategy

The main goals of this taint analysis project are to:

1. Minimize interference with normal program execution.

2. Demonstrate the effectiveness of the tool on real-world, user-facing applications where
security is a concern.

3. Support as many language features as possible.

4. Provide a simple and intuitive way for developers to use the tool.

To accomplish these goals in a dynamic analysis, our runtime library will use a taint rep-
resentation that is lightweight and easily propagated through the program without much
intervention. Before that, we will first describe the tool’s interface.

2.2 Interface

Basics. We provide a simple interface for developers to use our tool. To instrument the
code, you can run:

python3 -m tainted.instrument <source_file> -o <output_file>

where <source file> is the source file to instrument and <output file> is the file to dump
the instrumented code to. This is useful if the program is invoked in a different way than
python3 <source file>. For example, if the program is normally invoked via uvicorn

main:app, then the developer can run:

python3 -m tainted.instrument main.py -o main_instrumented.py

to instrument the code and then run uvicorn main instrumented:app to start an instru-
mented version of their web server. We also support directories now too, so an entire Python
application can be instrumented with a single command.

5

Type Comments. Python 3.5 added support for type hints where developers can annotate
function parameters and other variables with type information, but the Python interpreter
won’t enforce these types when loading the program. For example, the following code snippet
annotates the add function with type hints:

def add(a: int, b: int) -> int:

return a + b

result = add(1, 2)

This is mainly for documentation purposes and to aid programmers in writing well-typed,
and hopefully more correct, code. Static analyzers like mypy can use these type hints to catch
type errors, but they are not captured in the abstract syntax tree (AST) of the program
when parsing the code with the parse function from the ast library. Conveniently, Python
also supports type comments that can be added to variable assignments. This is useful for
our taint analysis tool, as developers can use these type comments to taint variables and
mark sensitive regions as sinks. More importantly, they can be examined in the AST. For
example, the following code snippet annotates the user input variable as tainted and the
query db function as a sink:

user_input = get_user_input() # type: taint[source]

result = query_db(user_input) # type: taint[sink]

so the resulting AST would look like this:

...

Assign(

targets=[Name(id="user_input", ctx=Store())],

value=Call(

func=Name(id="get_user_input", ctx=Load()), args=[], keywords=[]

),

type_comment="taint[source]",

),

Assign(

targets=[Name(id="result", ctx=Store())],

value=Call(

func=Name(id="query_db", ctx=Load()),

args=[Name(id="user_input", ctx=Load())],

keywords=[],

),

type_comment="taint[sink]",

)

...

6

We look for these type comments when walking over the AST to insert runtime calls to our
taint analysis library which we describe in Section 2.4. Currently, we support the following
annotations on assignment operations:

type: taint[source]

type: taint[sanitized]

type: taint[sink]

2.3 Runtime Library

2.3.1 Taint Representation

In our system, we represent taint on a thin wrapper class around the original data. Since
we cannot possibly predict and know all object types at runtime, including those outside of
the program being instrumented, we will use a just-in-time translation of pure objects to
taintable objects. To create a taintable object, we first have to create a taintable class that
inherits from the original object’s class. This allows us to add an is tainted attribute to the
base object and convenience methods to propagate taint or sanitize the object. This function,
create taintable class can be found in runtime.py. We also add taint propagation hooks
to all methods of the taintable class which will be described further in Section 2.3.2. However,
objects will not be marked as taintable by directly invoking this function. Instead, we provide
a make taintable convenience function that converts a pure object to a taintable object:

def make_taintable(obj: Any) -> Any:

_type = type(obj)

If the object is not taintable, we can just return it as is

if _type in NON_TAINTABLE_TYPES: return obj

if _type in taint_class_cache: return taint_class_cache[_type](obj)

Build a new class that inherits from the original

if _type in BUILTIN_TAINTABLE_TYPES:

taint_class = create_taintable_class(_type)

taint_class_cache[_type] = taint_class

return taint_class(obj)

Otherwise, initialize the hooks directly on the object

try:

create_taintable_object(obj)

except AttributeError as e:

tainted_object_ids.add(id(obj))

return obj

7

https://github.com/kamodulin/tainted/blob/main/tainted/runtime.py#L133

This allows us to prevent “non-subclassable” objects (e.g., bool, None) from being con-
verted to this representation. Since we rely on the type of the object to perform this
conversion, we can maintain a cache of taintable classes to avoid creating the same class
multiple times. Furthermore, we now support custom and third-party class instances via
the function create taintable object which will directly add taint tracking methods
and propagation hooks to the class instance itself. In fact, this function could replace
create taintable class altogether, but the overhead of adding the taint tracking code
is non-negligible so this seems to be a good combination of flexibility and performance. One
limitation of this representation is that any function that calls type on a taintable object
will not return the original type of the object, but rather the taintable class. There does
not seem to be an easy way around this without modifying the interpreter, which would
require a significant amount of work. Lastly, to support strictly immutable objects, we use
the built-in id function to add an object to a set of tainted ids as a fallback mechanism.
Unfortunately, this means that our current propagation mechanism will not work for these
objects, so more work would be needed to support this behavior in the future.

2.3.2 Taint Propagation

For the most critical aspect of our runtime taint system, we devised a simple way to prop-
agate taint information across function boundaries and method calls. To accomplish this,
we heavily exploited function and method call interposition to propagate taint and raise
exceptions when tainted data is found at a sink. To propagate taint through method
calls, we add a propagate taint function hook to most methods found on the class in
create taintable class or class instance in create taintable object. propagate taint

will wrap every taintable object’s method calls and will examine the object and method ar-
guments in order to set the result of the call to be tainted if any of the arguments are. This
can be seen in the function snippet below.

def propagate_taint(method):

def inner(self, *args, **kwargs):

result = make_taintable(method(self, *args, **kwargs))

if type(result) in NON_TAINTABLE_TYPES: return result

if is_tainted(self):

result = taint(result)

for arg in args:

if is_tainted(arg):

return taint(result)

for kwarg in kwargs.values():

if is_tainted(kwarg):

return taint(result)

return result

return inner

8

For regular sinks (e.g., simple assignment operations), we raise a RuntimeError if the data is
tainted just by checking its is tainted attribute or seeing if its id is in the tainted set. At
a function sink, we raise an exception if any of the arguments are tainted before the function
is called as seen in the next snippet.

def function_sink(fn: Callable, *args, **kwargs) -> Any:

for arg in args:

raise_if_tainted(arg)

for kwarg in kwargs.values():

raise_if_tainted(kwarg)

return fn(*args, **kwargs)

This requires tight cooperation with the instrumentation procedure to properly convert a
function call at a sink into the format expected by function sink, which we describe next.

2.4 Instrumentation

Our instrumentation code reads in a single Python file or a folder of Python files, parses their
ASTs, and visits each AST node with a custom ast.NodeTransformer class. Python literals
such as strings, integers, and floats and primitives like lists, tuples, and sets are wrapped
with a call to make taintable in the runtime library.

For assignments, if the right-hand side of the assignment is a function call and the
type comment type: taint[sink] is present, then we wrap the function call with a call
to function sink. The execution of the original function will be delayed until the taint
analysis library has determined that all arguments supplied to the function are untainted.
If the right-hand side of the assignment is not a function call, then we will wrap it with the
appropriate runtime call as follows:

• If type comment is type: taint[source], then call taint.

• If type comment is type: taint[sink], then call raise if tainted.

• If type comment is type: taint[sanitized], then call untaint.

• Otherwise, leave the node unchanged.

Lastly, since standalone functions cannot be annotated with a type comment, we pro-
vide a convenience function taint sink that takes a function as an argument and during
instrumentation is replaced with a call to function sink. This serves as an easy way for
developers to mark function calls as sinks, preventing them from having to be manipulated
to the format expected by function sink.

9

2.5 Setup

A detailed setup guide can be found at https://github.com/kamodulin/tainted.

10

https://github.com/kamodulin/tainted

3 Evaluation Methodology

In this section, we outline the metrics that we used to evaluate the efficacy of this taint
analysis approach.

3.1 Validation

To validate our tool at a basic level, we created numerous unit tests to test our runtime
library with most Python language features. Part of this included ensuring that taintedness
is propagated correctly across simple operations, method calls, and function boundaries.
These tests can be found in test runtime.py. Here is a snippet from one of test case that
demonstrates some features of our runtime library with lists:

def test_list():

l = _taint([1, 2, 3])

assert_tainted(l)

Indexing and slicing preserve taint because the whole list is tainted

assert_tainted(l[0])

assert_tainted(l[:2])

Commutative

assert_tainted(_taint([1, 2]) + [3, 4])

assert_tainted([1, 2] + _taint([3, 4]))

Tainted elements do not taint the whole list

assert_untainted([_taint(1), 2, 3])

As we can see, this test checks that the taint is propagated correctly when indexing and
slicing lists and that individual elements do not taint the whole list. Furthermore, when
concatenating lists, the taint is propagated correctly regardless of the order of the operands.
We also have tests for other built-in types, such as tuples, dictionaries, and sets. We have
not tested every single method of built-in types, but we believe that we have tested enough
to ensure that the core components of our runtime library are working as expected.

3.2 Performance Testing

Ideally, this tool extends beyond the scope of toy examples and can be used in real-world
applications, so we measured the overhead of taint tracking and its impact on application
performance. The specific tests can be found in test perf.py. Several speed tests were
conducted along with a peak memory usage test. The baseline version of the tests was run
without taint tracking and used pure Python objects. The tainted version of the tests adds
calls into the taint tracking runtime. Lastly, the ratio is calculated as the time or memory

11

https://github.com/kamodulin/tainted/tree/main/tests/test_runtime.py
https://github.com/kamodulin/tainted/tree/main/tests/test_perf.py

usage of the tainted version divided by that of the baseline version. The results are presented
in the table below.

Test Name Test Summary Baseline Tainted Ratio
Basic Arithmetic Performs simple arithmetic opera-

tions for 500,000 iterations.
0.016s 6.788s 419.25

Methods Performs 500,000 set.add opera-
tions.

0.010s 0.323s 32.83

Functions Performs 500,000 function calls and
in the tainted version wraps them
with a call to function sink.

0.023s 0.259s 11.21

Memory Usage Performs 10,000 math operations
and append the result of each to a
list to track memory usage.

83.2 KiB 2451.1 KiB 29.45

It is no surprise that the tainted versions of the tests are slower than the baseline versions.
This is most likely due to taint propagation logic that is invoked on most method calls.
Memory usage is also unsurprisingly higher in the tainted version due to the creation of
wrapped classes and objects, but we did not expect the discrepancy to be as large as it
is. It might be worthwhile to identify critical hotspots in the code using a profiler, but
we did not have time to do so. In Section 5, we discuss potential optimization strategies
including static analysis preprocessing to reduce the overhead of taint tracking. Ultimately,
the performance overhead is significant, but the tradeoff may be worthwhile in small to
medium-sized applications where security is a top priority.

3.3 Microbenchmarks

To validate that this approach is practical, we tested it on a few toy applications in Section 4.
The SQL injection example is a simple, canonical measure of the efficacy of the approach. If
our approach can detect SQL injection accurately across function boundaries and intercept
tainted data before executing a sensitive operation, then it is likely to be effective elsewhere.
The other synthetic microbenchmark we created was an encrypted chat application. This
application performs a Diffie-Hellman key exchange to establish a shared secret, which is
then used to encrypt and decrypt messages between a client and server. We will demon-
strate that our approach can detect secret key leakage before it is sent erroneously over the
network. We initially planned to examine a more complex application, such as a messaging
client built on the Signal Protocol, to see how well our approach scales to a more intri-
cate program. However, the chat application we created was sufficient to demonstrate the
approach’s effectiveness on a more complex example with multiple files and function calls.

12

4 Microbenchmarks

Here, we showcase the ability of our taint tracking to work with multiple files, functions,
and methods. The following examples demonstrate how the taint tracking analysis could be
used in real systems and indicate that our taint analysis is portable and tractable. Setup
guides for both of these microbenchmarks can be found here.

4.1 SQL Injection

In this benchmark, we will demonstrate how our dynamic taint analysis can be used to
mitigate SQL injection attacks. We will use a simple Python web server that uses FastAPI
to expose an endpoint for querying a sensitive database. Listing 1 shows the implementation
of the server and its interaction with the database. The code is simplified for the sake
of clarity. Furthermore, the tainted source, query is annotated with a type comment to
indicate that it is tainted, and the execute function is also annotated with a type comment
to indicate that it is a sink.

import sqlite3

from fastapi import FastAPI, HTTPException, status

conn = sqlite3.connect(":memory:")

app = FastAPI()

def fetch_one(query: str):

cursor = conn.cursor()

result = cursor.execute(query) # type: taint[sink]

user = result.fetchone()

return user

@app.get("/users/{user_id}")

async def get_user(*, user_id: str):

query = f"SELECT * FROM users WHERE id = {user_id}" # type: taint[source]

user = fetch_one(query)

if not user:

raise HTTPException(

status_code=status.HTTP_404_NOT_FOUND,

detail="The requested user does not exist",

)

return user

Listing 1: Python code vulnerable to SQL injection attacks.

13

https://github.com/kamodulin/tainted/tree/main/examples

After instrumenting the server with our taint analysis (Listing 2), it will be able to inter-
cept a malicious input and raise an error before the query is even executed. For example, if
an attacker issues an HTTP GET request to the /users/user id endpoint with a malicious
parameter (e.g., user id="https://example.com/users/0 OR 1=1"), a RuntimeError ex-
ception will be raised. The server and database will continue to run normally, but, more
importantly, the attack will be mitigated.

import sqlite3

from fastapi import FastAPI, HTTPException, status

from tainted import *

conn = sqlite3.connect(_make_taintable(":memory:"))

app = FastAPI()

def fetch_one(query: str):

cursor = conn.cursor()

result = _function_sink(cursor.execute, query)

user = result.fetchone()

return user

@app.get(_make_taintable("/users/{user_id}"))

async def get_user(*, user_id: str):

query = _taint(_make_taintable(f"SELECT * FROM users WHERE id = {user_id}"))

user = fetch_one(query)

if not user:

raise HTTPException(

status_code=status.HTTP_404_NOT_FOUND,

detail=_make_taintable("The requested user does not exist"),

)

return user

Listing 2: Instrumented server code.

Internally, the type comments are converted to specific function calls during instrumen-
tation. For example, the type comment # type: taint[source] will be converted to a call
to taint to mark the underlying value as tainted which can be seen in Listing 2. Similarly,
type: sink will be converted to a call to function sink to check if any arguments to
the original function are tainted. If so, this will raise a RuntimeError exception.

It is important to note that in this example, even regular users will trigger the runtime
error if they provide an input that is not sanitized, which would make for a poor user
experience. To address this, we provide a mechanism to sanitize tainted objects. Developers

14

can use the type: taint[sanitized] type comment to indicate that the input is no longer
tainted.

4.2 Cryptograhpic Key Leakage

In this benchmark, we demonstrate how to use our dynamic taint analysis to detect and
prevent cryptographic key leaks in a toy messaging application. If an attacker were able to
intercept private keys used in key exchanges, they would be able to decrypt all messages sent
between users. With taint tracking, we can mitigate this attack by preventing the key from
being leaked in the first place. So, we can label specific cryptographic keys as tainted (see
crypto.py) and mark network calls like sock.send as sinks. For example, in crypto.py,
we mark the secret key as tainted:

def generate_key_pair():

"""Create a public/private key pair for use in a Diffie-Hellman key

exchange."""

sk = ec.generate_private_key(ec.SECP256R1()) # type: taint[source]

pk = sk.public_key() # type: taint[sanitized]

return pk, sk

We also label the call to sock.send as a sensitive sink in main.py:

def handle_client(sock: socket.socket) -> None:

"""Handle a single client connection by exchanging keys and printing

messages."""

pk, sk = generate_key_pair()

_ = sock.send(serialize_key(pk)) # type: taint[sink]

...

This program is in fact correct, but let’s suppose that a developer misinterprets the variable
pk as private key instead of the public key. This would be a reasonable mistake to make
because there is little documentation and the two-letter variable name is ambiguous if you
are not familiar with the code. If the developer wrote the following code instead:

def handle_client(sock: socket.socket) -> None:

"""Handle a single client connection by exchanging keys and printing

messages."""

sk, pk = generate_key_pair()

_ = sock.send(serialize_key(pk)) # type: taint[sink]

...

the program may now leak the private key just by changing two characters! Now, with
taint tracking enabled, we can prevent this mistake from causing a security vulnerability.
When we run the instrumented program by creating a server and connecting a client, we will

15

https://github.com/kamodulin/tainted/tree/main/examples/chat/crypto.py
https://github.com/kamodulin/tainted/blob/main/examples/chat/main.py#L21

observe that the taint analysis runtime will raise a RuntimeError exception immediately
before the private key is sent over the network. While this seems like a contrived example, it
demonstrates how such a small mistake can lead to severe security implications and highlights
how taint tracking can be a powerful tool for preventing such vulnerabilities in production
software.

16

5 Future Directions

5.1 User-Defined Taint Flow

Instead of viewing taint as a binary property, we could allow users to define custom taint
levels. This would allow for finer-grained control over taint propagation and would allow for
more complex taint policies to be enforced. For instance, a user could define taint classes
as “secret”, “top secret”, and “confidential”, and then define policies that only allow data
to flow from “secret” to “top secret” if it has been sanitized. This could be implemented
as a lattice of taint labels, with some partial order relation to define the taint hierarchy
and flow policies. This lattice model has been previously described in the context of secure
information flow and access control mechanisms [4].

5.2 Static Analysis Optimization

Clearly, the instrumented code could be optimized to reduce the overhead of taint tracking.
Most literals and constants are wrapped in a custom object class. While this interposition
is necessary for a correct system, it is not necessary for every object and function if it can
be statically determined that the object does not need to be tracked. Moreover, if a tainted
object can never reach a sink, then it does not need to be tracked.

Performing a static analysis, such as a “reachability” interprocedural dataflow analysis,
could allow us to remove some of the taint tracking overhead. This would require a sophis-
ticated interplay between the dataflow analysis and the instrumentation but could result in
a significant performance improvement.

5.3 Interpreter Modification

There are some obvious limitations to the data representation of tainted objects. Every
single object is wrapped in a custom object class, which is convenient for this project, but is
not scalable. Additionally, any function that introspects on a wrapped object will see that it
has the type taintable class, not the wrapped type. To make this class as transparent as
possible, we most likely need to modify the Python interpreter to include a taint attribute on
every object. This would yield a more scalable and transparent solution but would require
a significant amount of work.

17

References

[1] J. J. Conti and A. Russo, “A taint mode for python via a library,” Information Security
Technology for Applications, 2010.

[2] A. Eghbali and M. Pradel, “Dynapyt: A dynamic analysis framework for python,” Soft-
ware Engineering Conference and Symposium on the Foundations of Software Engineer-
ing, 2022.

[3] “Pysa: An open source static analysis tool to detect and prevent security issues in python
code.” https://engineering.fb.com/2020/08/07/security/pysa/.

[4] D. E. Denning, “A lattice model of secure information flow,” Communications of the
ACM, 1976.

18

https://engineering.fb.com/2020/08/07/security/pysa/

	Background
	Technical Approach and Initial Work
	Strategy
	Interface
	Runtime Library
	Taint Representation
	Taint Propagation

	Instrumentation
	Setup

	Evaluation Methodology
	Validation
	Performance Testing
	Microbenchmarks

	Microbenchmarks
	SQL Injection
	Cryptograhpic Key Leakage

	Future Directions
	User-Defined Taint Flow
	Static Analysis Optimization
	Interpreter Modification

