Catamaran: A Raft-Based Fault-Tolerant and
Distributed DNS Nameserver

Kamran Ahmed
Stanford University

ABSTRACT

We present a fault-tolerant and scalable distributed DNS
nameserver that replicates DNS resource records using our
own custom (simplified) implementation of Raft. Our name-
server supports Dynamic DNS (DDNS) updates where ser-
vices can update resource records without the need to man-
ually edit zone configuration files. We present a motivating
example where services can continuously monitor their pub-
lic IPv4 address and push new resource records to our name
server with immediate effect. This grants clients uninter-
rupted access to services using their static domain names
even in dynamic environments where host IP addresses may
change often. We measure query and update latency, our
system’s ability to tolerate node failures, and the overall cost
of resource record replication compared to BIND 9, a popular
DNS nameserver software.

Jeremy Kim
Stanford University

1 INTRODUCTION

The Domain Name System (DNS) service forms an important
and highly utilized backbone of Internet services, mapping
their human-readable domain names, which tend to stay
the same, to their Internet Protocol (IP) addresses, which
may change over time. These domain names are used to
access important resources, such as websites and mail servers.
Without DNS, the Internet would become significantly less
usable for end-users.

DNS nameservers, which are responsible for responding
to queries regarding a particular domain name’s resources,
must endure failures, provide low latency for IP address reso-
lution, and handle many concurrent queries. A nameserver’s
failure would prevent access to the services associated with
its domain, such as a website hosted at that domain [15].
Furthermore, since DNS querying is often the first step to
connecting to an Internet service, poor performance at the
DNS nameserver, either due to high latency or low through-
put of DNS queries, would result in a bottleneck for starting
the connection. Due to the massive scale of Internet traf-
fic, the suboptimal performance of important nameservers
could potentially make popular services unusable for at least
thousands of users.

This work specifically investigates nameserver perfor-
mance with respect to Dynamic DNS (DDNS). DDNS allows
Internet services to remain accessible even when their IP ad-
dresses change continuously by facilitating frequent writes

Hari Vallabhaneni
Stanford University

Ruiqi Wang

Stanford University

to a domain’s nameserver, such as updating the IP address
of a subdomain [2]. Although large services often operate
from a static set of IP addresses, there are multiple situa-
tions where a service’s IP address would change frequently,
thus necessitating studies on DDNS. First, smaller services
may rely on ISP or cloud-issued ephemeral IP addresses. Sec-
ond, a mobile service’s IP address changes as it physically
moves between subnets. Major providers, such as Amazon
[10] and Cloudflare [2], support DDNS, further emphasizing
its relevance.

DDNS imposes additional requirements on a performant
DNS nameserver. First, low latency and high throughput
for reads become paramount. Resource records, which store
information regarding a domain’s IP addresses, cannot be
cached by an end-user for long periods because they may
become stale. Thus, the DDNS service must support frequent
and fast reads to be performant. Second, these services must
support an acceptable write throughput and latency. While
most DNS records are rarely updated because the domain
uses static IPs, DDNS records may be updated at a non-
negligible rate—for instance, an ISP may decide to re-issue IP
addresses at a certain time to all of its customers, or several
mobile or IoT devices hosting services may obtain new DHCP
leases or cross networks at the same time.

How can we develop a DDNS service that is fault-tolerant,
fast, and capable of handling many concurrent requests?
What are the performance tradeoffs incurred through repli-
cation? In this work, we develop a DDNS service that is
replicated across 5 servers with a custom implementation of
the Raft consensus algorithm [11]. We evaluate its through-
put and latency for reads and writes under normal and faulty
conditions and compare our service’s performance to a load-
balanced BIND 9 DNS nameserver [1], an established soft-
ware for operating nameservers.

2 BACKGROUND AND PREVIOUS WORK

Existing implementations of replicated or redundant DNS
nameservers have been widely used for several years already,
due to the reasons discussed above. One common approach
is anycast-based [9] distribution, where “one-to-many” client
connections are multiplexed among multiple equally priv-
ileged nameservers that share a single logical external IP
address. While this approach provides good load balancing
and enables users to continue sending queries in the event

that one or a few servers go down, there is no built-in mech-
anism to maintain consistent data among nameservers, and
supporting anycast routing complicates deployment.

Another approach separates responsibilities between pri-
mary and secondary nameservers [13, 14], where the primary
server is the central source of zone files, and has the ability to
update resource records; it propagates updates to secondary
servers. Secondary nameservers are able to resolve client
queries, but they cannot update records. Still, this scheme
provides high read availability in that services are still acces-
sible if the primary server goes down. We implement this
approach with BIND.

Consensus-based replication is a natural next step for
achieving read and write fault tolerance; when the leader
fails, a follower can immediately step up and maintain write
availability for clients. Load-balancing functionality can eas-
ily be added as an extra layer that sits between the client and
the replicated cluster. Although the remaining properties of
high throughput and low latency are not immediate, consen-
sus algorithms remain an interesting direction for improving
nameserver performance. This work investigates the Raft
consensus algorithm’s applicability to DDNS.

The Raft consensus algorithm is a leader-based consensus
algorithm. It achieves consistent state among a cluster of peer
servers by electing a server to act as a leader. All writes to
the shared state go to the leader, and the leader periodically
disseminates these updates to the rest of the cluster, its fol-
lowers, by sending regular AppendEntries RPC heartbeats.
When the cluster stops receiving heartbeats from the leader,
it holds an election to elect the next leader. More details are
described in the Raft paper, but the aforementioned details
are the most relevant to this work.

This work is not the first to build DNS based on Raft, but
it is unique for its focus on DDNS and work on write perfor-
mance. Orbay and Fisher implemented Raft-based consensus
among anycast-based DNS nameservers [12]. Although the
Raft algorithm requires all requests, including reads, to go
through the leader, Orbay and Fisher relaxed this restriction
so followers could respond to read requests. While this ad-
justment risked returning stale data, it still respected DNS’
requirements. Aariff et al. built on the prior work by com-
paring latency when DNS queries were sent to the leader
compared to a load balancer routing the request to any node
[4]. They found lower latency for requests through the leader,
but the latency differed by under 5 milliseconds. We hypoth-
esize that the latency difference might have been due to the
extra network hop incurred with a load balancer. Bi et al.
took Raft a step further by sharding DNS records between
independent Raft clusters with consistent hashing [6]. These
studies show Raft’s viability for nameserver replication.

Kamran Ahmed, Jeremy Kim, Hari Vallabhaneni, and Ruiqi Wang

Load balancer

Update i Query

DNS client

Figure 1: Catamaran system architecture.

3 DESIGN AND IMPLEMENTATION

Figure 1 shows Catamaran’s architecture. Clients send re-
quests to the IP address of a single external-facing load bal-
ancer, which distributes requests to the individual nodes.
Our nameserver cluster nodes and load balancer were provi-
sioned through Google Cloud Platform (GCP), so we used
GCP’s Maglev for load balancing in our experiments. The
exact mechanism used should not matter as long as there is
some method of balancing requests among the nodes, thus
providing a single logical address to end-users, akin to any-
cast. Each node in the cluster effectively functions as both:

e a Raft node instance that keeps the replicated state,
persists log entries to disk, and communicates with
other nodes in the cluster using Raft RPCs, as de-
scribed in [11].

e a DNS nameserver that can respond to both read and
write requests from clients using common tools like
dig and nsupdate, by passing these requests to the
Raft side. As per the Raft algorithm, the nameserver
waits until a DNS update has been safely replicated
or times out before replying to the client.

We implemented Catamaran in Go. We used existing exter-
nal libraries for running the nameserver logic and generating
well-formed DNS messages and resource records [7], and for
write-ahead logging/persistent storage [5]. During evalua-
tion, we used a rate-limiting library [8] to send DNS requests
at a specified maximum throughput. We implemented the
basic version of Raft as outlined in [11] from scratch (with
some extra modification), and used Go’s built-in net/rpc
library for sending and executing RPCs. The replicated state
machine that the Raft layer applies commands to is a key-
value store, mapping domain names (strings) to collections

Catamaran: A Raft-Based Fault-Tolerant and Distributed DNS Nameserver

Bind Latency CDF

1.0 A —— —=
A
[« 7
1/ 3
0.9 1 ;{ /
f /
Il /
0.8 ,‘ 7
z |/
3 J
% 0.7 !
£]
06 1
[
| —— read_4k_per_second
05711 read_8k_per_second
| ——- read_16k_per_second
0.4 1 | —-= read_32k_per_second
T T T T T T
40 50 60 70 80 90

Latency

Raft Latency CDF

1.0 1 0 —_
- -~
s
| it /
0.9 | !-,' f
I /
AN,
0.8 1 T 7
> | /
3 P/
% 0.7 14
£ i
06 !
1 1
_' —— read_4k_per_second
0.5 I read_8k_per_second
| —-—- read_16k_per_second
| —-- read_32k_per_second
04 h T T T T T T
40 50 60 70 80 90

Latency

Figure 2: CDFs of read latency (ms) at different throughputs measured over three trials.

of DNS resource records. Each log entry contains a command
to execute; they can either be remove commands with an
associated key, or update commands to set a particular key
and value (these are also used for creation); there is also a
blank command that represents the no-op commit that new
leaders make at the start of their terms. We chose not to
implement the extra features of membership change support
and log compaction due to the extra complexity involved.

We made three important changes to the Raft algorithm
for Catamaran. First, we allow followers to respond to read
requests. Although the original Raft paper stipulates that all
reads must go through the leader to provide linearizability,
linearizability is not a priority of DNS due to widespread
local caching. Even though followers may return stale data,
the lower read latency that this modification enables is a
higher priority.

Second, in addition to the base Raft RPCs, we also add our
own custom RPC, ForwardToLeader, for forwarding write
requests from follower nodes to the leader node, since all
writes must be done by the leader. The approach specified
in [11] for followers to handle write requests is to reject the
client’s request and reply with the leader’s direct IP, but this
puts the burden on the client to retry the request with the
leader’s address. It does not provide a seamless experience
for end-users and cannot integrate cleanly with standard,
pre-existing tools like dig. We explicitly return an error only
in the edge case where a write request is sent during an
active election and reaches a node with a candidate status;
the client will also receive an error if the RPC call times out,
e.g. if the leader crashes before it is able to receive or respond
to the write request.

Finally, we have the leader send batches of up to 10 log
entries to its followers whenever it sends heartbeats. The

original Raft paper suggests that multi-entry heartbeats can
improve efficiency, and our experience confirms this sugges-
tion. Batching helps our cluster handle higher write through-
puts.

The DNS layer listens for requests from clients, translates
them into requests to send to the Raft layer, and receives
DNS resource records in return. These are packaged into the
authority and answer sections of well-formed DNS replies
and sent back to the client.

We also wrote a custom DDNS client in Go that can con-
tinuously monitor a host’s IP address and send updates to
a nameserver. This client supports issuing DNS requests
at a specifiable maximum throughput, which we used for
experimentation.

4 EVALUATION

We used GCP to evaluate Catamaran. For our cluster, we used
five e2-standard-2 machines, each with 2 vCPUs and 8 GB
of memory all within the same region and zone (us-west1-
b). We provisioned a passthrough network load balancer to
distribute clients’ DNS requests across all of the five nodes.
Another machine with the same configuration in a differ-
ent region (us-southl-a) served as our testing node to issue
DNS queries and updates to the load balancer, varying the
maximum throughput via our custom DNS client.

4.1 Cost of Replication

To measure the cost of replication, we compared Catamaran
to a simple BIND configuration on our cluster. We installed
BIND 9 on three machines, where one was the primary server,
and the other two were secondary servers. Reads were sent
through the load balancer, but writes were sent directly to

Bind Latency CDF

1.0 7 —— write_16_per_second
v write_32_per_second
——=- write_64_per_second
0.8 4 —-= write_128_per_second
> 0.6
=
©
o
o
x 0.4
0.2 4
0.0 4
T T T T T
200 400 600 800 1000
Latency

Kamran Ahmed, Jeremy Kim, Hari Vallabhaneni, and Ruiqi Wang

Raft Latency CDF

1.0 r S —— -
J -
e f_/
,I, A
0.8 1 s -
g ,_,r
A o
! -
~ Je
. 064 l‘r -
= i g
el i /.’
S ’:' -
<04 o
I' ‘,
1 Al
1
] /
0.2 1 7 / —— write_16_per_second
/' /."/ write_32_per_second
,’/./' —-—- write_64_per_second
0.0 4 —-= write_128_per_second
T T T T T T
0 200 400 600 800 1000

Latency

Figure 3: CDFs of write latency (ms) at different throughputs over three trials.

the primary server. We used our DNS client from the testing
machine to issue queries and updates at a target rate. We
issued read and write requests at the target throughputs
specified in Table 1 and Table 2; these throughputs were
approximate because the testing clients waited for a batch
of requests to return before sending the next batch. This
approach allowed us to better reflect real-world conditions,
where the throughput jitters naturally, and evaluate higher
throughputs without overloading the Raft and BIND clusters.

RAFT BiND

Max THROUGHPUT Avc. 99.9'" Avg. 99.9th

4K 37 44 37 45
8K 37 44 37 44
16K 38 46 38 47
32K 40 60 40 59

Table 1: Read latency (ms) at different throughputs

RAFT BIND

Max THROUGHPUT AvG. 99.9'% Avg. 99.9th

16 118 204 71 104
32 111 231 102 168
64 225 476 163 298
128 498 1030 243 459

Table 2: Write latency (ms) at different throughputs

Reads incurred a low cost of replication in Catamaran.
The CDFs in Figure 2 are similar and Table 1 show similar
average and 99.9th percentile latencies. Similar to BIND,
where any server could answer a DNS query, any Raft node
could respond to read requests.

In Figure 3, we can see that the cost of replication in terms
of writes is non-negligible. For example, when making ap-
proximately 16 DNS updates per second, Raft had a 99.9th
percentile latency of 204 ms, while BIND’s was 104 ms. This
difference became more apparent when writing more rapidly;
when we made approximately 128 DNS updates per second,
Raft’s 99.9th percentile latency was 1030 ms, while BIND’s
was 459 ms. We observe this behavior because Raft processes
every DNS update sequentially, and all DNS updates are for-
warded to a leader with the ForwardToLeader RPC.

4.2 Fault Tolerance

To measure Catamaran’s ability to tolerate node failures, we
created a network partition to isolate a victim node from the
rest of the cluster while our testing machine continuously
sent either queries or updates to the cluster. The load balancer
sends health checks every second, so it quickly detects the
unhealthy victim node and directs incoming requests to the
rest of the cluster.

This experiment occurred as follows. The cluster ran nor-
mally for 20 seconds before the victim node was partitioned.
After 20 more seconds, the victim node was reintegrated into
the cluster. The cluster ran for an additional 20 seconds. We
measured both the query and update response throughput
of the system during these events, and either the leader or a
random follower was partitioned during our experiments.

We found that Catamaran was able to tolerate network
partitions fairly well. When issuing queries and partitioning
a follower, our system maintained a mostly consistent query
at ~39k responses per second and write response throughput
at ~130 responses per second (Figures 4 and 5, left panels).

Catamaran: A Raft-Based Fault-Tolerant and Distributed DNS Nameserver

40000 +

38000

36000 +

34000 4

Throughput (response/second)

32000 A
follower follower
30000 A down recovered
28000 A
T T T u T T T
0 10 20 30 40 50 60
Time (s)

Throughput (response/second)

40000

38000 A

36000 -

34000 A

32000

leader
ecovered

leader

30000 - down

28000

T T
30 40

Time (s)

T
20 50 60

Figure 4: Fault tolerance with queries. Throughput is measured as responses per second. Labeled dashed lines indicate
when the victim node was partitioned and added back to the cluster.

140 ; !
1 1
! ! r\-mw
1 1
i 1 1
s 120 . i
1 1
s 1 1
] 1 :
& 100 1 1 f
o 1
(%}
c 1
o I
5 80 + :
= T
- follower ! follower
=3 1
I-% i down recovered
& 60
=y 1
= 1
£ |
= 404 :
i i
1 1
201 1 1
1 1
T T - T T - T T
0 10 20 30 40 50 60
Time (s)

T -
140 : !
1 1
1 1
1
120 4 ! !
el
2 i i
100 i ;
a 1 1
3 1 1
2 | 1
2 80+ i i
3 I i
= leader | leader |
=
S 60 down recovered |
=3 1
=y
o 1
: :
= 40 t
F I
1
1 1
20 A ! i
1 1
1 1
T T - T T - T T
0 10 20 30 40 50 60

Time (s)

Figure 5: Fault tolerance with updates. As in Figure 4, throughput is measured as responses per second. Labeled dashed
lines indicate when the victim node was partitioned and added back to the cluster.

When partitioning a leader from the cluster, we observed
that the read throughput decreased by approximately 10%—
~39k responses per second prior to the partition and ~35k
responses per second during the partition (Figure 4, right
panel). Interestingly, the write response throughput stayed
largely consistent at around 130 responses per second, with
a very short reduction in throughput (Figure 5, right panel).

In terms of writes, we found that partitioning a leader had
a more adverse effect on throughput for a brief amount of
time than when a follower was partitioned. For example, our
system’s write throughput dropped from 128 to 10 responses

per second when partitioning a leader, while a follower par-
tition caused the write throughput to drop from 128 to 75
responses per second. Likely, a leader dying caused an elec-
tion, during which no progress could be made within the
cluster, causing requests to queue up in the cluster.

The left panel of Figure 5 shows a massive, but short, drop
in latency when the follower recovers. This behavior occurs
because the follower floods the networks with outstanding
RPCs when it recovers. Inspecting the follower node logs, we
found that during its partition, it started many elections. The
RequestVote RPC, which requests votes for leadership from
peers, indefinitely retries in the absence of responses as per

[11]. Once the follower recovers, it has many outstanding
RequestVote RPCs, thus preventing the cluster from making
progress.

5 LIMITATIONS

This work serves both as a research and educational project
for the team. One of the reasons that we worked on this
project was to gain a deeper understanding of Raft. While
we accomplished that objective, it also means that our Raft
implementation has room for improvement. During evalua-
tion, there were some transient failures that the team could
not fully explain. Additionally, there may be some implemen-
tation issues regarding Catamaran’s management of con-
nections between cluster nodes. Specifically, we observed a
multi-second period of low throughput caused by repeated
elections when we entirely killed a Raft node, rather than
partitioning it. We believe that these issues can be resolved
with a bit more time, probably through improved synchro-
nization (particularly by using read-write locks rather than
mutexes), and a review of Raft’s RPC retry requirements.

On the experimentation side, we recognize that BIND is
not explicitly developed for DDNS. However, many DDNS
services are proprietary services offered by a business, mak-
ing it difficult to benchmark Catamaran against an actual
DDNS service.

6 FUTURE WORK

With the results and limitations in mind, there are many
paths for future work. First, Catamaran can become a richer
service through implementing Raft’s log compaction and
membership change features. These features make Raft more
efficient and give flexibility to domain administrators to scale
clusters.

Second, it is worth exploring alternative consensus algo-
rithms, perhaps those with more relaxed correctness con-
straints. Raft’s requirement to immediately write log entries
to disk for correctness’ sake hampers its ability to support
high write throughput, which is relevant to DDNS in cer-
tain scenarios. A less restrictive consensus algorithm could
enable higher throughput and lower latency for reads and
writes. For example, Kubernetes uses a Gossip protocol, or a
peer-to-peer communication algorithm, to rapidly dissemi-
nate DNS records for Kubernetes APIs [3].

Kamran Ahmed, Jeremy Kim, Hari Vallabhaneni, and Ruiqi Wang

7 CONCLUSIONS

We presented Catamaran, a Raft-based replicated DNS sys-
tem that provides low latency and high throughput for reads
and moderate throughput and latency for writes. It provides
comparable performance to BIND 9, while providing stronger
fault tolerance. This system enables DDNS updates, so an
Internet service can be accessed from a static hostname while
operating on a dynamic IP address.

REFERENCES

[1] [n.d.]. BIND 9. https://bind9.net/

[2] [n.d.]. Cloudflare Learning Center: Dynamic DNS. https://www.
cloudflare.com/learning/dns/glossary/dynamic-dns/

[3] [n.d.]. Gossip DNS — Kubernetes Operations. https://kops.sigs.k8s.
io/gossip/

[4] Deen Aariff, Vishnu Narayana, and Zihao Li. [n. d.]. Evaluating Per-
formance and Safety of Distributed DNS with RAFT. ([n. d.]).

[5] Josh Baker. 2023. Write-ahead log for Go. https://github.com/tidwall/
wal

[6] Changyu Bi, Sean Decker, Kevin Qian, and Xinyi Yu. 2020. CRaft DNS:
a robust and scalable DNS server on Raft. (2020).

[7] Miek Gieben. 2024. DNS library in Go. https://github.com/miekg/dns

[8] Google. 2022. Go Time — supplementary Go time packages. https:
//cs.opensource.google/go/x/time

[9] Ted Hardie. 2002. Distributing Authoritative Name Servers via Shared
Unicast Addresses. RFC 3258. https://doi.org/10.17487/RFC3258

[10] Bryan Liston, Jeremy Cowan, and Efrain Fuentes. 2016. Building a
Dynamic DNS for Route 53. https://aws.amazon.com/blogs/compute/
building-a-dynamic-dns-for-route-53-using-cloudwatch-events-
and-lambda/

[11] Diego Ongaro and John Ousterhout. 2014. In Search of an Un-
derstandable Consensus Algorithm (Extended Version). https:
//raft.github.io/raft.pdf

[12] Emre Orbay and Gabbi Fisher. 2017. Distributed DNS Name server
Backed by Raft. (2017).

[13] Michael A. Patton, Scott O. Bradner, Robert Elz, and Randy Bush.
1997. Selection and Operation of Secondary DNS Servers. RFC 2182.
https://doi.org/10.17487/RFC2182

[14] Paul A. Vixie. 1996. A Mechanism for Prompt Notification of Zone
Changes (DNS NOTIFY). RFC 1996. https://doi.org/10.17487/RFC1996

[15] Donghui Yang, Zhenyu Li, and Gareth Tyson. 2020. A Deep Dive
into DNS Query Failures. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20). USENIX Association, 507-514. https://www.usenix.
org/conference/atc20/presentation/yang

https://bind9.net/
https://www.cloudflare.com/learning/dns/glossary/dynamic-dns/
https://www.cloudflare.com/learning/dns/glossary/dynamic-dns/
https://kops.sigs.k8s.io/gossip/
https://kops.sigs.k8s.io/gossip/
https://github.com/tidwall/wal
https://github.com/tidwall/wal
https://github.com/miekg/dns
https://cs.opensource.google/go/x/time
https://cs.opensource.google/go/x/time
https://doi.org/10.17487/RFC3258
https://aws.amazon.com/blogs/compute/building-a-dynamic-dns-for-route-53-using-cloudwatch-events-and-lambda/
https://aws.amazon.com/blogs/compute/building-a-dynamic-dns-for-route-53-using-cloudwatch-events-and-lambda/
https://aws.amazon.com/blogs/compute/building-a-dynamic-dns-for-route-53-using-cloudwatch-events-and-lambda/
https://raft.github.io/raft.pdf
https://raft.github.io/raft.pdf
https://doi.org/10.17487/RFC2182
https://doi.org/10.17487/RFC1996
https://www.usenix.org/conference/atc20/presentation/yang
https://www.usenix.org/conference/atc20/presentation/yang

	Abstract
	1 Introduction
	2 Background and Previous Work
	3 Design and Implementation
	4 Evaluation
	4.1 Cost of Replication
	4.2 Fault Tolerance

	5 Limitations
	6 Future Work
	7 Conclusions
	References

